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ABSTRACT 

The flow of an infinitely conducting plasma past a two-dimensional 

magnetic dipole oriented parallel  to the flow has been considered by Hurley, 

amongst others. 

such that along a bounding field line whose location is to be found, the mag- 

netic p re s su re  balances the Newtonian dynamic pressure  appropriate to the 

local slope of the boundary. 

Huth; in their case there  i s  no flow, but an isotropic static plasma surround- 

ing the magnetic field region which exerts a constant p re s su re  on the bound- 

a ry .  In the actual flow problem we would expect there  to be a stagnant 

(trapped) region near  the front. 

stant pressure .  

be applicable, This problem, which is  a mixture of those cited above, has 

been solved by an approximate technique due to Cockroft. 

shown to have features of both the cited problems, a s  appropriate. 

The problem consists of finding a vacuum magnetic field 

A related problem has been solved by Cole and 

The stagnant flow would be a t  nearly con- 

Away from this region the Newtonian p res su re  would again 

The solution is  



INTERACTION O F  A STREAMING PLASMA WITH THE MAGNETIC 
FIELD OF A TWO-DIMENSIONAL DIPOLE 

1 Hurley, Dungey, and Zhigulev and Romishevskii3 (amongst others) 

have treated t h e  fcllcwizg pr~blem:  a t ; ; - o - d i i ~ i ~ ~ i ~ i ~ ~ i d  dipole is placed in a 

uniform hypersonic s t r eam of gas  of infinite conductivity, but which ca r r i e s  

no magnetic field. 

If the compression ratio across  this shock is la rge  there  is  a thin shock 
2 2  layer just  behind the shock in which the p re s su re  is  taken to bepmuoosin a, 

where a is the angle between the shock and the oncoming flow. At the back 

of the shock layer is a current  sheet behind which there  is a magnetic field 

but no plasma. Since there  is  no magnetic field ahead of the current  sheet, 

and since the normal component of the magnetic field i s  continuous across  a 

cur ren t  sheet, the t race  of the current sheet is a field line. 

the field strength behind the current sheet is given by: 

A shock wave forms in the gas upstream of the dipole. 

Furthermore,  

2 2 2 
B /8n =pooua, sin a 

Behind the current  sheet the magnetic field satisfies the usual conditions for 

such fields in vacuo. The problem is t o  find the shape of the boundary (and, 

a l so  the magnetic field within it) consistent with the above condition. 

F o r  the case  in which the dipole axis is a t  a substantial angle to the 

oncoming flow, the solutions referred to above a r e  aerodynamically satis-  

factory near  the stagnation point. However, they imply the existence of a 

neutral  point where B = a = 0. Some significance has  been attached to the 

exact position of the neutral point, so it seems appropriate to point out that 

the centrifugal force in the curved shock layer will reduce the p re s su re  be- 

low p mumsin  a a t  all angles, and to zero  for  a finite shock angle. 

cylinder, the pressure  goes to zero whena M 3 5 O ) .  Thus the actual position 

of the neutral  point cannot be determined even approximately using the right 

2 2  (On a 



lead one to consider a region of trapped flow. 

using (1) lead to "re-entrant" boundaries to the cavity ( see  Fig. l ( a ) ) .  

shapes a r e  clearly impossible since the fluid between the lines QQ' is  de- 

flected inward by the shock; some provision must be made for the escape of 

this fluid. It seems unlikely that the fluid would escape inwards f rom the 

Calculations for  these cases  

These 

I cusp point P in the immediate neighborhood of the dipole. A more  reason- 
able situation i s  shown schematically in  Fig. l(b). 

(hatched in Fig. l(b)) in which there  i s  almost no flow and no magnetic field. 

The p res su re  in  this region i s  approximately poouoo. 

the points Q can be considered nearly normal; a slight curvature (greater  

than the distance QQ by an amount roughly equal to the compression ratio 

ac ross  the shock) would allow the gas to escape outwards in a thin layer be- 

hind the shock without inducing any substantial flow in the trapped region. 

The condition on the magnetic field along the lines FQ i s  that these lines 

should be field lines, and that the field strength (and hence the magnetic 

pressure)  should be constant along them. 

the shock is normal, the usual condition (1) may be applied. 

into the wind. F o r  the calculations that follow we take ( 877pmuoo 2)1/2 t o b e  

our unit of field, and our unit of distance will be chosen such that the undis- 

turbed dipole produces unit field at unit distance. 

graph plane, and, in  order  to show how our results may be compared to r e -  

lated problems, we shall t rea t  three problems simultaneously. 

We imagine a region 

2 The shock wave joining 

Outwards from the points Q where 

In this note we shall t rea t  the case in  which the dipole points directly 

We shall work in the hodo- 

Problem (a) i s  just that of Hurley, the rule (1) being applied along the 

:%These remarks  also apply, of course, to three-dimensional work in  this 

field. 
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entire shock. 

of uniform p res su re  such that a cavity is formed having constant field strength 

along its boundary. This problem was solved by Cole and Huth . Our r e a -  

son for  reproducing it here  is that it is plainly applicable locally in  problem 

(c), represented by Fig. l(b). These three  problems a r e  shown schematic- 

ally in  Fig. 2. 

tion to the region y 2 O .  

Problem (b) i s  a dipole placed in a stationary isotropic plasma 

4 

The symmetry of the problem allows us  to  confine our atten- 

Near the origin in  each case we have 

w- -z-', dw/dz = Bemia-z -2  

where w is the complex potential, z = x t iy, B is  the magnitude of the mag - 
netic field and a its inclination to  the x-axis. 

The hodograph plane is defined by 

(3)  5 = u t  iv = dz/dw = B  -1 e ia-  - ( c o s a t  i s i n a ) / B  

Its utility for  the present  problems stems f rom three facts: 

having unit magnetic p re s su re  map onto sec tors  of the unit c i rc le .  

when v = 1, B = sin a which satisfies condition (1) and makes sense whenever 

0 511 5 7r. It will be observed that this condition on a is satisfied for  all 

relevant portions of the boundaries in  Fig. 2. Thirdly, by treating only the 

upper half of the z-plane, the mapping into the hodograph plane i s  one-to-one. 

Figure 3 shows the boundaries appropriate to  our three problems in the 

e-plane, with corresponding points labeled with corresponding le t ters .  The 

r ea l  axis in the z-plane, which must  be a field line, contains only forward 

facing ( a =  0) field vectors and therefore represents  a cut along the positive 

r e a l  axis  in the e-plane. It is easily verified that w ~ - 5-l" near  the dipole. 

First, surfaces  

Second, 

To complete the problems, one fur ther  transformation is necessary  

For  prob- in c a s e s  (a) and (c). 

l em (a) we define t by the Schwarz-Christoffel transformation: 

We transform to  a new plane (the t-plane). 

7rd&/dt = t/(l-t) ; = -t -b(l-t) (4) 
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so that the region of interest  becomes the upper half of the t-plane; the points 

NOPR become the points t = -00 ,  0,1, a. 

given by 

2 Near t = 0, 7~ C- t /2 so that w is 

w = -&/t (5) 

Integrating to  recover the z-plane, 

dw t dt; dt =&[1 +(y)&l-t)] (6) 
z=JCdw $ cx dt = &w f W X  

0 

Hence the distance O P  is ( 2 / 7 ~ ) l / ~  and the curve PQR is found by letting t 

take rea l  values greater than unity giving: 

I t  x = (2/7T)1/2 [ 1- (1- t - l )Rt  (t-1) 

y = (27@ (1-t-l) 

This curve i s  shown in Fig .  4(a)::’ 

To t rea t  problem (b) we can notice at  once that the solution i s  

( 7 )  

since this expression is  rea l  on the contour of Fig. 3(b). 

cover the z-plane gives: 

Integrating to r e -  

In this case the distance O P  is thus 2/3 and the curve PQRST is given by 

::‘The curve derived from Eq. (7)  agrees  with the formula of Hurley, loc. cit. 

However, in a private communication, Hurley has stated that his  graph (Fig. 

6 in his paper) is in e r r o r .  
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letting w take r ea l  values between -2 and 2, and we find 

3 x = w /6 -w 

This curve is shown in Fig. 4(b) and agrees  with Cole and Huth (loc. cit. ). 

We turn now to  problem (c). We have not found it possible to  find an 

exact mapping to treat this problem, a s  shown in Fig .  3(c). Therefore, we 

have used a modification of the Schwarz-Christoffel transformation due to  

Cockroft . We define the t-plane by: 

The points NOPQR transform to the points t = - w ,  a( <O), 0, 1 , ~ .  

axis of the t-plane then transforms into the lines NO, OP, a curve joining P 

and Q, and the line QR. 

5-plane corresponding to  the segment PQ in the t-plane with the quadrant of 

the unit circle.  

change in 5 along OP (one rea l  condition) and along PQ (one complex condi- 

tion). With these values the curve in the 5-plane corresponding to the seg- 

ment PQ in the t-plane has been calculated; it is shown in  Fig .  5 .  

mum deviation f rom the quadrant of the unit c i rc le  i s  370. 
in the physical plane to  a magnetic pressure  along the segment PQ that ex- 

ceeds unity by a maximum of 670. 
problem can be completed by recovering the z-plane as  follows: 

t = a, (11) gives (since a i s  negative) 

Thus the r ea l  

The approximation l ies in  identifying the curve in the 

The three constants in (11) a r e  determined by calculating the 

The maxi- 

This corresponds 

If this approximation be accepted, the 

near  5 = 0, 
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The complex potential is  therefore 

-1 w = -C  (t - a) 

where the constant c is  determined f rom (12), and 

t 
z = f i d w = j t  5 %  dt = 5w w- d5  dt dt 

a 

The integrations in  Eqs. (11) and (14) a r e  easily performed by choosing 

(1 - t ) as independent variable.  The values of the constants a r e  

a = -2 .  716, b = .4438, A = . 1601. 

is  shown in  F ig .  4(c). 

-1 1/2 

The boundary of the magnetic field region 

Conclusion 

In Table I we list the principal dimensions of our resul ts ,  namely, 

the distance O P  (xp), the co-ordinates of the point Q (x 

y-coordinate of R, yR, which is  asymptotic in character  for problems (a) 

and (c). 

y ) and the Q’ Q 

Table I 

xP Problem 

(a) .80  

(b 1 . 6 7  

(c) . 6 9  

XQ 
1.02 

.94  

1 .01  

YQ YR 

. 5 5  2.  51 

. 4 7  1 .33  

.57  2. 50 

As we anticipated, Problem (c) resembles  Problem (b) near  the 

point P and becomes like Problem (a) at  R. The agreement between Prob-  

lems  (a) and (c) at Q is,  perhaps,  more  surprising. It s eems  that, in c e r -  

tain cases  a t  least, one can construct flows having trapped regions in  this 

type of magnetohydrodynamics f rom simpler situations without fear  of sub- 

stantial e r r o r .  
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Fig. 1 (a) Re-entrant shape of the cavity formed i n  a hypersonic s t r eam 
by a dipole oriented parallel to the flow, when the magnetic p re s -  
sure  i s  balanced along the boundary by the Newtonian p res su re  

p,u, sin a. (b) Proposed form of the flow for this case;  the 

hatched region i s  stagnant gas  a t  constant p re s su re  p,u, . A 
nearly normal  shock joins the points Q. 

2 2  
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F i g .  2 z-plane for problems (a) (b) and (c).  0 i s  the dipole. Solid l ines 

Broken l ines represent  portions of 
represent portions of the boundary along which the Newtonian p r e s -  
sure  condition (1) i s  applied. 
the boundary along which the field has  constant (unit) strength.  

A 1 2 6 6  

A 1 2 6 7  

A 1 2 6 8  
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Fig .  3 c-plane for problems (a), (b) and ( c ) .  
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F i g .  4 Boundary shapes for problems (a), (b) and ( c ) .  
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Fig. 5 Part of the 6-plane for problem (c).  
(broken line) corresponds to Fig.  3(c ) .  
computed from (1 l ) ,  represents  our approximation. 

The quadrant of the unit c i rc le  
The solid line, which is 
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